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Higher-Order Vector Finite
Elements for Tetrahedral Cells

J. Scott Savage, Student Member, IEEE, and Andrew F. Peterson, Senior Member, IEEE

Abstract— Edge-based vector finite elements are widely used
for two-dimensional (2-D) and three-dimensional (3-D) electro-
magnetic modeling. This paper seeks to extend these low-order
elements to higher orders to improve the accuracy of numer-
ical solutions. These elements have relaxed normal-component
continuity to prohibit spurious modes, and also satisfy Nedelec’s
constraints to eliminate unnecessary degrees of freedom while
remaining entirely local in character. Element matrix derivations
are given for the first two vector finite element sets. Also, results
of the application of these basis functions to cavity resonators
demonstrate the superiority of the higher-order elements.

I. INTRODUCTION

HE FINITE element solution of three-dimensional (3-D)

electromagnetic problems using the lowest order vector
finite elements, detined by Nedelec on tetrahedra [1], has
been well documented [2]-[3]. These elements are commonly
referred to as edge eclements or Whitney elements. Because
the functions do not impose normal-component continuity be-
tween cells, they produce no spurious modes in the numerical
solution of the curl-curl equation. However, these mixed-order
elements, which allow a constant tangential, linear normal
(CT/LN) representation of the fields on mesh edges, limit
the accuracy of the finite element solution. Higher order
basis functions, also proposed by Nedelec. allow for more
accurate solutions of 3-D problems, while retaining the benefit
of permitting no spurious modes. These functions fall in
the general class known as “‘curl conforming™ since they
do not impose complete continuity, but do ensure tangential
continuity between cells. The next higher order basis functions
on tetrahedra provide a linear tangential, quadratic normal
(LT/QN) representation of the fields. The basis functions of
next higher order have a quadratic tangential, cubic normal
(QT/CuN) representation for the fields.

This article reviews these basis functions and provides
closed-form expressions for the element matrices arising from
the CT/LN and LT/QN functions. In addition, numerical results
for the resonant frequencies of 3-D cavities are presented to
illustrate the relative accuracy of the higher-order functions
and the error trends as the cell sizes are reduced.

II. BASIS FUNCTION DEFINITION

Table 1 shows an unnormalized simplex-coordinate repre-
sentation of CT/LN, LT/QN, and QT/CuN basis functions for
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a given cell in the finite element mesh. I, is the simplex
coordinate associated with node ¢ of the cell. L; is unity at
node ¢ and decays linearly to zero at the other three nodes
of the cell. For edge based functions, ¢ and j represent the
two node indices associated with that edge. For face based
functions, ¢, 7, and % represent the three node indices at the
vertices of that face.

Since CT/LN basis functions have six unknowns associated
with any cell, they lead to 6 x 6 element matrices, while
LT/QN and QT/CuN basis functions result in 20 x 20 and 45
X 45 element matrices, respectively. Also, CT/LN functions
have one unknown per edge throughout the global model,
while LT/QN functions have two unknowns per edge and two
unknowns per face. QT/CuN functions have three unknowns
per edge, six unknowns per face, and three unknowns per
tetrahedron. Thus, higher order basis functions lead to more
unknowns for a given finite element mesh. Also, higher order
basis functions result in global matrices with greater density
(more nonzero entries per row and column). Therefore, the
computational burden in creating and solving the finite element
matrices for a given mesh increases with the order of the basis
functions.

The basis function definitions in Table I apply to an indi-
vidual tetrahedron. Since many tetrahedra may share a certain
edge. the global basis functions on that edge straddle each
of those tetrahedra. Similarly, up to two tetrahedra may share
a common face, so the global basis functions on that face
straddle those tetrahedra. This convention ensures tangential
field continuity across tetrahedra boundaries throughout the
mesh.

HI. ELEMENT MATRIX DERIVATIONS

Efficient finite-element analysis of electromagnetic fields in
3-D regions requires computation of two element matrices
associated with the curl-curl form of the vector Helmholtz
operator [3]. These two matrices are

Euz/vXE-vXEdv )
v

and

P, = /‘ BB, v 2

where B, represents the ith vector basis function and 1’
indicates integration over one tetrahedron. It is implied that
(1) and (2) involve only the portion of each basis function
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TABLE 1
3-D VECTOR BASIS FUNCTIONS ON TETRAHEDRA

(CT/LN)
6 functions

(LT/QN)
20 functions

(QT/CuN)
45 functions

6 Edge Based

12 Edge Based

forall i<j, forall i=j, forall i#j,
LVL,~LVL LVL, L2L-1)VL, i=]j
8 Face Based foralli<j,
forall i<j<k, LL(VL-VL,)
LLVL, = LLVL, 24 Face Based

LLVL, - L,LVL

18 Edge Based

forall i#j#k,
L(2L,-1(LVL, - LVL)
{LVL, - LVL)

3 Cell Baged
LLLVL - LLLVL

LLLYVL~ LLLYL
L]LJLAVLZ - qu3L4VL'1

which lies in a particular cell. A closed-form derivation of
these matrices facilitates efficient formation of the global finite
element system of equations.

A. CT/LN Elements

This section presents the derivation of element matrices for
constant tangent/linear normal CT/LN basis functions. These
basis functions are associated with tetrahedra edges and are
defined in Table I as

B; =1;(LiyVLip — LpVLy) i=1,-+,6. (3)
In this representation, L;; is the simplex coordinate associated
with the first node of edge %, L;> is the simplex coordinate
associated with the second node of edge 7, and [; is the length
of edge 4. The simplex coordinates for a given cell are

Li=a; +b;x +c;y+d;z i=1---.4 4)

and the gradient of any simplex coordinate is
|

VL; = b + ciff + di5. (5)

The simplex coefficients, a;---d;, can be computed by in-
verting the coordinate matrix

—1
by c di . T Ty I3 T4
bp co dy a2| _ |y1 Y2 U3 Y4 )
by c3 ds a3 Z1 zg Z3 24
by c1 ds a4 1 1 1 1

where (x;,y;, 2;) is the location of node ¢. As an intermediate
step in computing the inverse of the coordinate matrix, the
volume of the tetrahedron, V, is computed. As implied in (6),
these simplex coefficients are not normalized to the volume
of the tetrahedron.

TABLE I
LocaL FACE, EDGE, AND NODE CONVENTIONS
Edge # Node 1 Node 1
1 1 2
2 1
3 1 4
4 2 3
5 2 4
6 3 4
Face # Node 1 Node 2 Node 3
1 1 2 3
2 1 2 4
3 1 3 4
4 2 3 4
1 2

Fig. 1. The node and edge labeling convention used in this document. Face
labeling conventions are presented in Table IL

All tetrahedra are given a local structure as illustrated in
Fig. 1. The first local node associated with any edge, i1, is the
lesser of the two node numbers adjacent to the edge. Table II
presents the convention used for local node, edge, and face
numbering. For notational and computational convenience, the
following notations are adopted. For two given nodes, i and
4, a vector matrix and scalar matrix are defined as
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v, =VL, x VL, = i(ed; — ¢,d,) + §(b,d, — b,d,)
+ 2(b.c; — byc,) (7

and
¢y =VL, VL, =bb, +cc, +d.d, )

where each of the simplex coefficients are defined in (6). These
matrices are constant for a given cell, and may be obtained as
the first step in element matrix computation. Since both ¥ and
¢ are independent of position. either may be removed from any
integrand. Also, note that v,; = —%,,. The evaluation of the
element matrix in (1) requires the curl of each basis function

V x B_l =V x lz(LﬂVLzQ — LzZVLzl)
=1,V x (L1VLis) — L,V x (LaVL,1)
=2,V Ly x VL = 20,1 2. )

Again, 71 and :2 are the endpoints of edge 7. With this, (1)
becomes
EL] :4lzl] / EZI,L2 : 671,]2 av
Jy

:4VZLZJ(EL1,12 '76]17]2)- (10)

The second element matrix, given in (2), requires the
calculation of basis function dot products

B, B,
=1,(L1V L2 — L2V L) - [,(LaVLy — LsVEL)

LyL;i(VLip - VL) — L1 Ly2(Viy - VL)
—L2L;1(VLiy - V6e) + LigLyjo(VLi - VL) |

(11)

= Ui,

Applying the notation of (8), (11) becomes

B, B; =1l;[LaL;1(¢i2,2) ~ LaLja(én 1)
— Lo Lji (i1 jo) + LiaLya(din j1)]. (12)

The second element matrix may then be written

FL] :lzl_][¢t2,]2/ LLlel av — ¢L2.jl/ L’LlL]2 av
v

- ¢L1‘J2/ LoLy dV + ¢i1,j1/ L.oL,y dV].(13)
v Vv

This expression may be simplified by employing the general
integration formula for 3-D simplex coordinates

L rr e 313l
///UU(Lﬂ“LQ(LQ m/“(3+i+j+k+n!'
J

(14

In (13), two simplex coordinates (possibly the same) are
involved in each integral. These integrals can be expressed
in matrix form as

2 1 1 1

1 111 2 1 1
MU_F/VLILJdV*% L (15)

1 1 1 2

Using (15), (13) reduces to

E] = Vlzl] [¢z2,J2M21,]1 - ¢l2‘]1]\/[L1,_]2

- ¢21,J2A[z2,]1 + ¢)Zl‘jl']\"{22,j2]‘ (16)

B. LT/ON Elements

This section presents the linear-tangent, quadratic-normal
(LT/QN) element matrices. LT/QN basis functions exist in
two forms, edge based and face based functions. The edge
based functions can be written in terms of the two simplex
coordinates which correspond to the endpoints of an edge.
while the face based functions can be written in terms of the
three simplex coordinates which correspond to the vertices of
a face. The edge based LT/QN basis functions are

Ffl = liLuVLzz
B* =;L,,VL,

where “‘el” denotes the first type of edge basis function, and
“e2” denotes the second type of edge basis function. The two
face-based basis functions associated with face 7 are

EZ = L21L12VL13 - L11L13VL12 1=1.---. 4

BL = L21L12VLL3 - Lz2L13VLL1 ’ ’

i=1,---,6 (17)

(18)

where “f1” represents the first type of face basis function,
and “f2” represents the second. For face-based basis functions.
11,42, and 43 indicate the three vertex indices of face ¢. The
element matrices for LT/QN elements involve interactions
between the four types of basis functions. Therefore, the
element matrices can be represented as block matrices

Eelel EEleQ Eelfl Eelf2
Ee?el EeZeZ Ee2f1 Ee?fZ
E = Eflel  pfle2  pfifl  phie (19)
Ef2el  pi2e2  prafl pfar2
where, for example
Egit = / Vx BV x B dv. (20
v

The subscript 4 in (20) is an edge index and the subscript
J is a face index. This is implied by the superscripts, “el”
and “f1”, respectively. The second element matrix, F, can be
represented similarly

Felel Fele2 Felfl Fe1f2
5 9
I Fe2e1 FeQeZ Fe..fl Fe2f2 (21)
Fflel Ff1e2 Fflfl Ff1f2
Ff261 Ff2e2 Fff.’fl Ff2f2

To evaluate each block matrix in (19), the curl of each of the

four types of basis functions is needed. For the first type of

edge based basis function, “el”, the curl is

VxB' =V x (I,LiVL2) =1,V X VL = ,T,1 0.

(22)

Similarly, the curl of the second type of edge based basis

function, “‘€2”, is

V x B? =V x (1,L,sVL,1) =1,VLy X VL,

=-V x B = ;7,1 5. (23)
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The curl of the first type of face based basis function, “f1”, is
slightly more complicated.

V x B! =V x (Li1LiaVLi3) — V x (Li1 LisV Lia)
:V(LilLiQ) X Vli3 — V(LilLi;;) X VL
=(Li1VLig+ LipV L) x VL

= (Li1VLiz + L3V Li1) X VLo
=2L;1(VL;i2 x VL;3) + L;a(VL;i1 x VL;3)
— L;i3(VIL;; x VL,2)

=2L10;2,33 + Li2Ui1,i3 — LisUi1 in- (24)
Similarly, the curl of the “f2” function is
V x B2 = LTz i3 + 2Li2Ti1.43 + LiaTi1 e2- (25)

An examination of the original element matrices, (1) and (2),
reveals that both are symmetric. Therefore, only those matrices
on or above the main diagonal in (19) and (21) need to be
evaluated. Using the curl expressions in (22)—(25) and the
integration matrix notation of (15), the 4, j entries in each of
the submatrices in (19) are

elel __ — —
E5 S =Vl - Uj1,52)

ele2 __ = T ) - elel
E3 % =Viili(iri2 - Ujo, 1) = —E5j

e2e2 __ — — — lel
B3 =V6LIi(Wam - Vjag1) = B¢

Vii_ _ _ _
7 Uitz (20jz3 + Vjags = TUja, o)

e2fl __ Vli_ — — —
E;" =~ Ui (202,53 + Tj1,53 — Uj1,52)

- elfl
= _Eij

£1£1 — = —
B =V(4Mi1,5102,8  Tj2,53 + 2Min, j2Vizs

(26)
@27
(28)

Ept = 29)

(30)

V51,53 — 2Mo 537i2,43 - Uy1,52

+ 2M;2,;17:1 43 - Uj2,53 + M2, 275153
“Tj1,53 — Ma2, jaTi1,63 - U150

— 2M;3 51142 - V52,53 — M3 3201 42

3D
(32)

“Ty1,53 + Mis jalisiz - Ujt,52)
erfa _ Vii_ _ _ _
Ejj" =~ iie - (Uizgs + 2j13 + Uj1,j2)
e2f2 __ Vlt— — — —
B =~ Vi1 (Uizgs + 20518 + Ujnje)
— _Egle
¥}

£1£2 = = .
B =V(2Mo1,j1%i2,43 - Uy2,53 + 4Mi1,52Ta2,i3

(33)

U153 + 2Miy 53Te2,03 - Tj1, 52
+ M2 51Ti1 43 - Tja,j3 + 2Mi2 j2T01 43
“Uj1,53 + M2, 33Vi1,43 - Uj1, 52
— M3 103142 - Uj2,53 — 2M3, 52051 0
“Tj1,43 — Mi3, j3Ti1,52 - Uj1,52) (34)
Efffz =V{(M;1,j10i2,i3 - Uj2,53 + 2Mi1,52Vi2,i3
Ty1,53 + Mi1,53V,2,48 - Uj1,52
+ 2M;3 ;175143 * Uj2,53 + 4Mi2, 520143
“Tj1,58 + 2M;2,,3051,03 - Uj1, 52
+ M;3 3103142 - Uj2,53 + 2M,3 39751 02
(35)

U158 + M3 j3T1 02 - Tp1,52)

The block entties in the second element matrix, (21), follow
a similar derivation, to produce

Ffjlel =Viiljpiz j2Mi1 j1 G0
Fg? =Viilypinj1 M g2 G
szj2e2 =VId;jp1,;1 My 52 %)
FM =Vii(¢in,j3Ninj1.52 — $iz.j2Nit,j1,58) (39)
Fv%zfl =Vi;(¢i1,j3 N2, j1,52 — $i1,j2Ni2 j1,53) 40)
Fi{" =V (hiz 3Pajizgn 2 — $is,g2Piving1is

— iz, j3Piris 1,92 + 2,32 P s g1,53) (A1)
FEM2 =Vii(gu,jaNig1y2 — b2 j1Ningays)  (42)
Fiegm = Vii(¢i1,53Niz, 51,52 — di1,j1Niz,52,53) “43)
F =V (¢is 3P,z 1,2 — iz, 1 Piviz 2,53

= $iz,j3Pi1,is,41,52 + Piz, i1 Pins j2,58)  (44)

£202 _
Fii* =V(dis,jsPitiz,1,52 — $is,j1Firi2,52,53

— ¢i1,j3Pi2,i3,51,52 + Pi1,j1 Pii3,52,53)-  (45)

The new integration matrices, /N and P, are straightforward
extensions of M from (15)

1

szk: = v (46)

/ LiL; Ly dV
Vv
and

1
Fijm =57 / LiL;jLgLy dV. (47)
12

IV. APPLICATION TO RESONANT CAVITY ANALYSIS

The element matrices derived above may be used to con-
struct global finite element matrices. This is accomplished
by summing the element matrix terms for each tetrahedron
in the mesh. With knowledge of the connectivity matrix for
the mesh, it is possible to predetermine the sparsity structure
of the global matrices. This allows for memory efficient
construction of the global matrices in which only nonzero
terms are stored. When combined with an iterative eigenvalue
solution algorithm, this provides a memory and processor
efficient finite element algorithm. The CT/LN and LT/QN basis
functions were implemented in the finite element analysis of
cavity resonators. To illustrate the relative accuracy of these
functions, they were used to estimate the wavenumbers of the
vector Helmholtz equation for homogenous media

VxVxE=FEKE. (48)

The resulting matrix eigensystem was solved for the wavenum-
bers k, using a sparse solver based on the method of subspace
iteration [4].

A rectangular cavity, with dimensions 1 x 0.5 x 0.75 m,
was discretized using a commercial software package into
six meshes of various density. This package creates unstruc-
tured tetrahedral meshes which strive to keep all tetrahedra
well-shaped. Table III presents the results for CT/LN basis
functions and Table IV presents the results for LT/QN basis
functions. The edge lengths in these tables indicate the average
length of all the edges in the mesh. Although the convergence
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TABLE III
NUMERICAL RESULTS FOR CT/LN BASIS FUNCTIONS
Unknowns 28 75 100 163 227 299 Exact
Edge Length, A §| 044493 [ 0.31161 | 0.29486 | 0.25917 | 0.23571 | 0.21848 § Wavenumber
TE101 476396 | 5.10871 | 5.17303 | 5.14063 | 5.19660 | 5.19896 '5.23599
TE110 6.29049 | 6.76497 | 6.90798 | 6.95349 | 7.03549 | 6.90898 7.02481
TEO11 7.23955 | 7.32075 | 7.23088 | 7.26992 | 7.45543 | 7.42344 7.55145
TE201 7.75215 | 7.36646 | 7.63382 | 7.41055 | 7.55504 | 7.46930 7.55145
TM111 7.92726 | 7.73602 | 7.98521 | 7.92726 | 7.99250 | 8.02093 8.17887
TE111 8.36779 | 8.17575 | 8.29114 | 8.16214 | 8.26244 | 8.13015 8.17887
TM210 8.92183 | 8.32673 | 8.36658 | 8.54727 | 8.63590 | 8.69363 8.88577
TE102 9.50991 | 8.67504 | 8.88956 | 8.71941 8.81744 | 8.92136 8.94726
TABLE 1V :
NUMERICAL RESULTS FOR LT/QN BAsIS FUNCTIONS
Unknowns 204 518 668 1058 1430 1882 Exact
Edge Length, & | 0.44493 | 0.31161 | 0.29486 | 0.25917 | 0.23571 | 0.21848 | Wavenumber
TE101 5.26421 | 5.23886 | 5.23524 | 5.23498 | 5.23593 | 5.23671 5.23599
TE110 7.06509 | 7.03298 { 7.02931 | 7.03118 | 7.02600 | 7.02800 7.02481
TEO11 7.56545 | 7.56938 | 7.55086 | 7.54626 | 7.55329 | 7.55216 7.55145
TE201 7.69411 | 7.57587 | 7.55620 [ 7.55683 | 7.55896 | 7.55491 7.55145
TM111 8.22497 | 8.20124 | 8.18831 | 8.19219 | 8.18845 | 8.17913 8.17887
TE111 8.30736 | 8.21067 | 8.19727 | 7.19700 | 8.19189 | 8.18344 8.17887
TM210 8.81126 | 8.92389 | 8.89925 | 8.89649 | 8.89899 | 8.89752 8.88577
TE102 8.90346 | 8.97387 | 8.95721 | 8.93565 | 8.95150 | 8.95565 8.94726

of any particular eigenvalue is usually erratic, the general error
behavior of the two methods is apparent when the average
error of several modes is visualized. Fig. 2 shows the average
percent error of the first eight modes plotted versus the average
length, h, of all edges in the mesh. A curve fit through
the data points indicates the order of convergence of the
two methods. For this geometry, a curve fit to the CT/LN
data has an exponent of 1.98, while a similar curve through
LT/QN data has exponent 3.86. This O(h?) convergence for
CT/LN elements and O(h*) convergence for LT/QN elements
is consistent with previous 2-D numerical investigations and
the theoretical 3-D dispersion analysis of Warren [5]. Similar
trends were observed for other cavity geometries including
spherical and cylindrical shapes.

As indicated in Fig. 2, on a given mesh, the LT/QN basis
functions give much more accurate solutions for the wavenum-
bers, k, than do CT/LN basis functions. However, for a given
mesh, LT/QN basis functions require more unknowns than
CT/LN functions. Based on experience, approximately six
times as many unknowns are needed for the LT/QN basis func-
tions on a given mesh. Even though LT/QN elements require
more unknowns,Fig. 3 demonstrates that for equal numbers of
unknowns, LT/QN elements still outperform CT/LN elements.

Higher-order elements also affect the global mairix spar-
sity characteristics. CT/LN basis functions typically yield
global matrices with approximately 15 nonzero entries per
row, while LT/QN functions usually give global matrices
with approximately 35 nonzero entries per row. This means
that LT/QN solutions require more computational effort than

3-D Error Comparison
Average of First 8 Modes

10 ¢

Average % Error

0.01 . 1
03 04 05
Average Edge Length, »

0.2

Fig. 2. Error comparison between CT/LN and LT/QN elements based on the
average mesh edge length, k. The slope (exponent) of the CT/LN curve fit is
1.98, while the slope of the LT/QN curve fit is 3.86.

CT/LN solutions with an equal number of unknowns. How-
ever, in analyses with equal unknowns, CT/LN basis functions
require a mesh with many more tetrahedra. This increased
mesh density increases the mesh creation time and the mesh
storage requirements. Therefore, LT/QN basis functions used
with relatively coarse meshes provide more efficient solutions.
This assumes that no additional geometry modeling errors are
introduced by using a coarse mesh. For arbitrary geometries,
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3-D Error Comparison
Average of First 8 Modes

Average % Error

® LT/QN

b ookt s kb s L

1000 10000

PO |

0.01 .
10 100

Unknowns

Fig. 3. Error comparison between CT/LN and LT/QN elements based on the
number of unknowns. The curves diverge, indicating that LT/QN elements
provide more accurate solutions with equivalent computational effort.

this necessitates the use of curved tetrahedra, a subject of
future work.

V. CONCLUSION

This paper has reviewed the first three mixed order, 3-D,
vector basis functions for tetrahedra. Element matrices were
derived for CT/LN and LT/QN elements. Results were pre-
sented from the application of these two basis function sets to
cavity resonator analysis. It is concluded that higher order basis
- functions are preferable to lower order basis functions, since
higher order bases are capable of providing more accurate
results with coarse tetrahedral meshes, fewer unknowns, and
less overall computation. Numerical solutions for the resonant
wavenumbers were observed to converge at an O(h?) rate
for the CT/LN functions and an O(h4) rate for the LT/QN
functlons
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