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Higher-Order Vector Finite

Elements for Tetrahedral Cells
J. Scott Savage, Student Afernber, IEEE, and Andrew F. Peterson, Senior Member, IEEE

Abstract— Edge-based vector finite elements are widely used

for two-dimensional (2-D) and three-dimensional (3-D) electro-
magnetic modeling. This paper seeks to extend these low-order

elements to higher orders to improve the accuracy of numer-
ical solutions. These elements have relaxed normal-component

continuity to prohibit spurious modes, and also satisfy Nedelec’s
constraints to eliminate unnecessary degrees of freedom while
remaining entirely local in character. Element matrix derivations

are given for the first two vector finite element sets. Also, results

of the application of these basis functions to cavity resonators
demonstrate the superiority of the higher-order elements.

I. INTRODUCTION

T HE FINITE element solution of three-dimensional (3-D)

electromagnetic problems using the lowest order vector

finite elements, detined by Nedelec on tetrahedral [1], has

been well documented [2]–[3]. These elements are commonly

referred to as edge elements or Whitney elements. Because

the functions do not impose normal-component continuity be-

tween cells, they produce no spurious modes in the numerical

solution of the curl-curl equation. However, these mixed-order

elements, which allow a constant tangential, linear normal

[CT/LN) representation of the fields on mesh edges, limit
the accuracy of the finite element solution. Higher order

basis functions, also proposed by Nedelec, allow for more

accurate solutions of 3-D problems, while retaining the benefit

of permitting no spurious modes. These functions fall in

the general class known as “curl conforming” since they

do not impose complete continuity, but do ensure tangential

continuity between cells. The next higher order basis functions

on tetrahedral provide a linear tangential, quadratic normal

(LT/QN) representation of the fields. The basis functions of
next higher order have a quadratic tangential, cubic normal

(QT/CuN) representation for the fields.

This article reviews these basis functions and provides

closed-form expressions for the element matrices arising from

the CT/LN and LT/QN functions. In addition, numerical results

for the resonant frequencies of 3-D cavities are presented to

illustrate the relative accuracy of the higher-order functions

and the error trends as the cell sizes are reduced.

II. BASIS FUNCTION DEFINITION

Table I shows an unnormalized simplex-coordinate repre-

sentation of CT/LN, LT/QN, and QT/CuN basis functions for
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a given cell in the finite element mesh. L, is the simplex

coordinate associated with node i of the cell. Li is unity at

node i and decays linearly to zero at the other three nodes

of the cell. For edge based functions, i and ~ represent the

two node indices associated with that edge. For face based

functions, i, ~, and k represent the three node indices at the

vertices of that face.

Since CT/LN basis functions have six unknowns associated

with any cell, they lead to 6 x 6 element matrices, while

LT/QN and QT/CuN basis functions result in 20 x 20 and 45

x 45 element matrices, respectively. Also, CT/LN functions

have one unknown per edge throughout the global model,

while LTIQN functions have two unknowns per edge and two

unknowns per face, QTICUN functions have three unknowns

per edge, six unknowns per face, and three unknowns per

tetrahedron. Thus, higher order basis functions lead to more

unknowns for a given finite element mesh. Also, higher order

basis functions result in global matrices with greater density

(more nonzero entries per row and column). Therefore, the

computational burden in creating and solving the finite element

matrices for a given mesh increases with the order of the basis

functions.

The basis function definitions in Table I apply to an indi-

vidual tetrahedron. Since many tetrahedral may share a certain

edge, the global basis functions on that edge straddle each

of those tetrahedral. Similarly, up to two tetrahedral may share

a common face, so the global basis functions on that face

straddle those tetrahedral. This convention ensures tangential

field continuity across tetrahedral boundaries throughout the

mesh.

III. ELEMENT MATRIX DERIVATIONS

Efficient finite-element analysis of electromagnetic fields in

3-D regions requires computation of two element matrices

associated with the curl-curl form of the vector Helmholtz

operator [3]. These two matrices are

E,l =
/

-vx B*. vxz7Jdv (1)~.

and

F,l =
r -

B, . B, dV (2)
1“

where B, represents the ith vector basis function and 17

indicates integration over one tetrahedron. It is implied that

( 1) and (2) involve only the portion of each basis function
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TABLE I

3-D VECTOR BASIS FUNCTIONS ON TETRAHEDRAL

(CTiLN) (LTIQN) (QT/CuN)

6 functions 20 functions 45 functions

6 Edge Based 12 Edze Based 18 Edge Based

foralli<j, foralli*j, fOralli#j,

~VL, - LjVL, ~VL, ~(2Ll - l)VLJ, i # j

8 Face Based foralli<j,

foralli<j<k,
L#,(V~ - VL,)

L, L,VLk - L,~VL,

L, L,VLk - LjLkVL,
24 Face Based

foralli*j#k,

L(2& - l)(L,VL, - L,VL,)

g(L,VLk - AVL,)

3 Cell Based

.%4VL, - 4.&L,Vh

I&L,V~ - ~~L4V~

L,~L4V~ - ~~L4V~

which lies in a particular cell. A closed-form derivation of TABLE II

these matrices facilitates efficient formation of the global finite LOCALFACE,EDGE,AND NODE CONVENTIONS

element system of equations. II Edge# [ Node 1 I Node 1 11
A. CT/LN Elements

This section presents the derivation of element matrices for

constant tangent/linear normal CT/LN basis functions, These

basis functions are associated with tetrahedral edges and are

defined in Table I as

Bi = li(Li1VLi2 – Li2VLi1) ~=1, . . ..f3. (3)

In this representation, L~l is the simplex coordinate associated

with the first node of edge i, Li2 is the simplex coordinate

associated with the second node of edge i, and li is the length

of edge i. The simplex coordinates for a given cell are

Li = ~i + bix + C~y + diz i=l, ...,4 (4)

and the gradient of any simplex coordinate is

VLi = bik + Ci$ + di?. (5)

The simplqx coefficients, a~ ..0 d~, can be computed by in-

verting the coordinate matrix

where (xi, yi, Zi) is the location of node i. As an intermediate

step in computing the inverse of the coordinate matrix, the

volume of the tetrahedron, V, is computed. As implied in (6),

these simplex coefficients are not normalized to the volume

of the tetrahedron.

6 4

Face # Node 2 Node 3

u 1 1 2 3

1 2

Fig. 1. The node and edge labeling convention used in this document. Face
labeling conventions are presented in Table II.

All tetrahedral are given a local structure as illustrated in
Fig. 1. The first local node associated with any edge, il, is the

lesser of the two node numbers adjacent to the edge. Table II

presents the convention used for local node, edge, and face

numbering. For notational and computational convenience, the

following notations are adopted. For two given nodes, i and

j, a vector matrix and scalar matrix are defined as
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T,j = V’L, X VLI = i(c,dj – Cjd, ) + y(bjd, – b,dj) Using (15), (13) reduces to

+~(b, cj –bjc, ) (7) F,l = Vl,lJ[IPt2,j2h!&1 – &2,]1~~,1,12

and – 4zl,J2~ft2),l + &l,,l~f?2,,2]. (16)

~,, = VL, . VLJ = b,bl -t C,CJ i- d,d, (8) E. LT/QN Elements

where each of the simplex coefficients are defined in (6). These This section presents the linear-tangent, quadratic-normal

matrices are constant for a given cell, and may be obtained as (LT/QN) element matrices. LT/QN basis functions exist in

the first step in element matrix computation. Since both v and two forms, edge based and face based functions. The edge

@are independent of position. either maybe removed from any based functions can be written in terms of the two simplex

integrand, Also, note that U,j = —Uf~. The evaluation of the coordinates which correspond to the endpoints of an edge.

element matrix in ( 1) reauires the curl of each basis function while the face based functions can be written in terms of the

-VXB,

Again, i 1 and

becomes

. .
three simplex coordinates which correspond to the vertices of

= v x 1,(L%IVL*2 – L,2vL,~) a face. The edge based LT/QN basis functions are

=l,,V x (L,lVLi2) – lLV x (L,2VL,I) B:l = liLilVL,2
= 21,VL,I X VL,,2 = 21iii,1\12. (9) B~2 = liLz2VLll }

~=1, . ..$fj (17)

i2 are the endpoints of edge i. With this, (1) where “e 1” denotes the first type of edge basis function, and

“e2” denotes the second type of edge basis function. The two

face-based basis functions associated with face z are

B:l = L, IL,2VL%3 – L,~Lz3vL,2

}
2= 1,...,4

~f2 = L,~L%zVL,3 – Lz:Lz3VLbl
(lo) ‘

(18)

The second element matrix, given in (2), requires the

calculation of basis function dot products
where “f 1” represents the first type of face basis function,

and “f2” represents the second, For face-based basis functions,

B, B, i 1, i2, and i3 indicate the three vertex indices of face i. The

= 1,(LZ1VL,2 – Lt2’vL,l) 1J(L11VL12 – LJ2T7L11)

[

= ~,1 LzlLjl(vLi2 ~ ~Lj2) – Lz1Lj2(VLz2 . VLjl)

1
‘ J –Lt2LJ1(VLzI ~VLJZ) + Li2Ljz(VLil . VLJ1) ‘

(11)

Applying the notation of (8), (11) becomes

B, . Bj = lilj[LtlL~l (@,2,j2) – LtlLj2(#t2,jl)

– L~2Ljl(@il,j2) + Lt2L32(#i1,j1)]. (12)

The second element matrix may then be written

This expression may be simplified by employing the general

integration formula for 3-D simplex coordinates

(14)

In (13), two simplex coordinates (possibly the same) are

involved in each integral. These integrals can be expressed

in matrix form as

r21111

M,, = ;I 1 1211
L,L1 dV= —

20 1121 ‘
(15)

1’
h112_/

element matrices for LT/QN elements involve interactions

between the four types of basis functions, Therefore, the

element matrices can be represented as block matrices

rllel’l llelez J5’elfl lle1f2 I

1
~e2el ~e2e2 ~e2fl ~e2f2

~ = ~flel ~fle2 ~flfl ~flf2

~f2el ~f2e2 ~f2fl ~f2f2
I

(19)

where, for example

The subscript i in (20) is an edge index and the subscript

j is a face index. This is implied by the superscripts, “cl”

and “f 1”, respectively. The second element matrix, F, can be

represented similarly

[

F .1,1 F.le2 F~lfl ~~lf2

~.2el Fe2e2 ~~~fl ~,~f2

F = Fflel 1Ffle2 ~flfl Fflf2 (21)

Ff2.1 @’~e2 Ff~fl ~f~f2

To evaluate each block matrix in (19), the curl of each of the

four types of basis functions is needed. For the first type of

edge based basis function, “e l“, the curl is

V X B:l = V X (11L21VL,2) = l,VL,l X VL%2 = l,li,l,tz.

(22)

Similarly, the curl of the second type of edge based basis

function, “e2”, is

V X B;2 = V X (l,LL2~&) = 1,VL,2 X VL,I

= –V x B:l = –liGll,,2. (23)
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The curl of the first type of face based basis function, “fI”, is

slighfly more complicated.

V X ~~1 = V X (Li1Li2VLi3) – V X (Li1Li3VLi2)

= V(Li1Li2) X Vi!i3 – V(LilLi3) X VLi2

= (Li1VLi2 + Li2VLil) x VLi3

– (Li1VLi3 + Li3VLil) x VLt2

= 2Li1(VLi2 X V~i3) + Li2(VLi1 X VLi3)

– Li3(VLil X VLZ2)

= 2LilCiz,i3 + Li25il,i3 – Li3~il,i2. (24)

Similarly, the curl of the “f2” function is

VX~~2=L i1Ui2,i3 + 2Li2tii1, i3 + Li3Di1,z2 . (25)

An examination of the original element matrices, (1) and (2),

reveals that both are symmetric. Therefore, only those matrices

on or above the main diagonal in (19) and (21) need to be

evaluated. Using the curl expressions in (22)–(25) and the

integration matrix notation of (15), the i, j’ entries in each of

the

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

The block entries in the second element matrix, (21), follow

a similar derivation, to produce

F,;lel = Vlilj&,j2Mi1,j1 (36)

F~1e2 = vlilJ#iz,jlMzl,jz (37)

F%~2e2= Vlilj#%l,j~Mtz,3z (38)

l?~lfl = Vli(#iz,.jsNil,jl,j2 – #i2,j2~il,jl,j3) (39)

F~2fl = Vli(Cj$i~,jsNiz,jl,j2 – @il,j2~i2,jl,j3) (40)

F%~fl = V(#i3,331’al,i2,21,j2 – $i3,j2pil,i2,Jl,j3

– @i2,j3pil,i3,jl,j2 + #32,j2ptl,z3,jl,j3) (41)

F~~lf2 = Vli($%2,j3Nil,Jl,3z – $t2,jlNil,j2,j3) (42)

F~2f2 = Vli(#i1,33Niz,jl,jz – #il,jlNi2,32,~3) (43)

Ff1f2 = v(@is,jGpil,iz,jl,jzall – $i3,jlpil,i2,j2,j3

– @i2,j3pil,i3,jl,j2 + di2,jlpil,i3,j2,j3) (44)

F~J2f2= V(#i3,j3Pi1,i2, jl,jz – $is,jlpil,iz,jz,js

- #il,j3pi2,i3,jl,j2 + @il,jlpi2,i3,j2,j3). (45)

The new integration matrices, N and P, are straightforward

extensions of M from (15)

N%3h = ~
/v~

LiLjLk dV

and

Pij~l = ~
Jv~

LiLjLkLl dV.

IV. APPLICATION TO RESONANT CAVITY

(46)

(47)

ANALYSIS

The element matrices derived above may be used to con-

struct global finite element matrices. This is accomplished

by summing the element matrix terms for each tetrahedron

in the mesh. With knowledge of the connectivity matrix for

the mesh, it is possible to predetermine the sparsity structure

of the global matrices. This allows for memory efficient

construction of the global matrices in which only nonzero

terms are stored. When combined with an iterative eigenvalue

solution algorithm, thi8 provides a memory and processor

efficient finite element algorithm. The CT/LN and LT/QN basis

functions were implemented in the finite element analysis of

cavity resonators. To illustrate the relative accuracy of these

functions, they were used to estimate the wavenumbers of the

vector Hehnholtz equation for homogeneous media

VxVx~=k2~. (48)

The resulting matrix eigensystem was solved for the wavenum-

bers k, using a sparse solver based on the method of subspace

iteration [4].

A rectangulm cavity, with dimensions 1 x 0.5 x 0.75 m,

was discretized using a commercial software package into
six meshes of various density. This package creates unstruc-

tured tetrahedral meshes which strive to keep all tetrahedral

well-shaped. Table III presents the results for CT/LN basis

functions and Table IV presents the results for LT/QN basis

functions. The edge lengths in these tables indicate the average

length of all the edges in the mesh. Although the convergence
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TABLE III

NUMERICAL RESULTSFOR CT/LN BASIS FUNCTIONS

l==Unknowns

Edge Length, h

TE101

E
TEllo

TEol 1

TE201

TM1ll

TElll

TM21O

TE102

28 75 100 163 227 299

0.44493 0.31161 0.29486 0.25917 0.23571 0.21848

4.76396 5.10871 5.17303 5.14063 5.19660 5.19896 J ‘5.23599

~29049 6.76497 6.90798 6.95349 7.03549 6.90898 7.02481

7.23955 7.32075 7.23088 7.26992 7.45543 7.42344 7.55145

7.75215 7.36646 7.63382 7.41055 7.55504 7.46930 7.55145

7.92726 7.73602 7.98521 7.92726 7.99250 8.02093 8.17887

8.36779 8.17575 8.29114 8.16214 8.26244 8.13015 8.17887

8.92183 8.32673 8.36658 8.54727 8.63590 8.69363 8.88577

9.50991 8.67504 8.88956 8.71941 8.81744 892136 . 8.94726

TABLE IV

NUMERICAL RESULTSFOR LTIQN BASIS FUNCTIONS

Unknowns 204 518 668 1058 1430 1882

Edge Length, h 0.44493 0.31

TElol 5.26421 5.23886 5.23524 5.23498 5.23593 5.23671

TE110 7.06509 7.03298 7.02931 7.03118 7.0260il 7.02800 7.02481

TEO11 7.56545 7.56938 7.55086 7.54626 7.55329 7.55216 f 7.55145

TE201 7.69411 7.57587 7.55620 7.55683 7.55896 7.55491 7.55145

TM1ll 8.22497 8.20124 8.18831 8.19219 8.18845 8.17913 8.17887

TE1ll 8.30736 8.21067 8.19727 7.19700 8.19189 8.18344 8.17887

TM21O 8.81126 8.92389 8.89925 8.89649 8.89899 8.89752 8.88577

TE102 8.90346 8.97387 8.95721 8.93565 8.95150 8.95565 8.94726

of any particular eigenvalue is usually erratic, the general error

behavior of the two methods is apparent when the average

error of several modes is visualized. Fig. 2 shows the average

percent error of the first eight modes plotted versus the average

length, h, of all edges in the mesh. A curve fit through

the data points indicates the order of convergence of the

two methods. For this geometry, a curve fit to the CT/LN

data has an exponent of 1.98, while a similar curve through

LT/QN data has exponent 3.86. This 0(h2) convergence for

CT/LN elements and 0(h4) convergence for LT/QN elements

is consistent with previous 2-D numerical investigations and

the theoretical 3-D dispersion analysis of Warren [5]. Similar

trends were observed for other cavity geometries including

spherical and cylindrical shapes.

As indicated in Fig. 2, on a given mesh, the LT/QN basis

functions give much more accurate solutions for the wavenum-

bers, k, than do CT/LN basis functions. However, for a given

mesh, LT/QN basis functions require more unknowns than

CT/LN functions. Based on experience, approximately six

times as many unknowns are needed for the LT/QN basis func-

tions on a given mesh. Even though LT/QN elements require

more unknowns,. Fig. 3 demonstrates that for equal numbers of

unknowns, LT/QN elements still outperform CT/LN elements.
Higher-order elements also affect the global matrix spal-

sity characteristics. CT/LN basis functions typically yield

global matrices with approximately 15 nonzero entries per

row, while LT/QN functions usually give global matrices

with approximately 35 nonzero entries per row. This means

that LT/QN solutions require more computational effort than

3-D Error Comparison
Average of First 8 Modes

10 ~ 1c
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& ■
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. . . . . . =........ .

r 1~

J_...__E5_l
0.2 0.3 0.4 0.5

Average Edge Length, h

.2. Error comparison between CT/LN and LT/QN elements based on theFig.
average mesh edge length, h. The slope (exponent) of the CT/LN cnrve fit is

1.98, while the slope of the LT/QN curve fit is 3.86.

CT/LN solutions with an equal number of unknowns. How-

ever, in analyses with equal unknowns, CT/LN basis functions
require a mesh with many more tetrahedral. This increased

mesh density increases the mesh creation time and the mesh

storage requirements. Therefore, LT/QN basis functions used

with relatively coarse meshes provide more efficient solutions.

This assumes that no additional geometry modeling errors are

introduced by using a coarse mesh. For arbitrary geometries,
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3-D Error Comparison
Average of First 8 Modes

10

‘-’j% ........................ .\
~~ti:+

0.01 I I
10 100 1000 1000O

Unknowns

Fig. 3. Emorcompuison between CT~Nmd LT/QNelements based on the
number of unknowns. The curves diverge, indicating that LT/QN elements
provide more accurate solutions with equivalent computational effort.

this necessitates the use of curved tetrahedral, a subject of

future work.

V. CONCLUSION

This paper has reviewed the first three mixed order, 3-D,

vector basis functions for tetrahedral. Element matrices were

derived for CT/LN and LT/QN elements. Results were pre-

sentedfrom the application of these two basis function sets to

cavity resonator analysis. It is concluded that higher order basis

functions are preferable to lower order basis functions, since

higher order bases are capable of providing more accurate

results with coarse tetrahedral meshes, fewer unknowns, and

less overall computation. Numerical solutions for the resonant

wavenumbers were observed to converge at an 0(h2) rate

for the CT/LN

functions.

functions and an 0(h4)-rate for the LT/QN
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